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Discrete Data Transfer Technique for Fluid–Structure 
Interaction  

Jamshid A. Samareh* 
NASA Langley Research Center, Hampton, VA 23681 

This paper presents a general three-dimensional algorithm for data transfer between 
dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction 
and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is 
independent of the mesh topology, we can treat structured and unstructured meshes in the 
same manner. The algorithm is fast and accurate for transfer of scalar or vector fields 
between dissimilar surface meshes. The algorithm is also applicable for the integration of a 
scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors 
(e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ 
computer code. This paper contains a complete formulation of the algorithm with a few 
selected results. 

Nomenclature 
A = area 
B = finite element basis functions 
d = distance 
f = load vectors 
F = data matrix 
K = stiffness matrix 
L = length of a 2-sided element 
M = moments 
n = surface unit normal vector 
p = projection of CFD mesh points onto CSM mesh 
P = pressure loads 
r = element coordinates  
R = mesh coordinates 
T = transformation matrix 
U =  virtual work 
V = design variables 
x, y, z = coordinates 
δ = deflection vectors 
ξ1, ξ2 = element parametric coordinates  
 
Subscripts 
e = element 
F = fluid 
i, j, k = source point number, element number, and target point number, respectively 
S = structures 
T = total 
1, 2 = mesh numbers 
 
Superscripts 
S, T = source and target meshes 
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I. Introduction 
curate data transfer among various disciplines is a key ingredient in any high-fidelity multidisciplinary analysis 
and optimization. For example, the strong coupling between the external flow and the aircraft structure can 
prompt physically important phenomena. Correct modeling of these complex aeroelastic phenomena requires 

an accurate coupling of computational structural mechanics (CSM) and computational fluid dynamics (CFD) for a 
flexible structure. In a multidisciplinary environment, various disciplines share the same geometry, but the models 
(e.g., CSM and CFD) have dissimilar meshes. In addition, the data from one discipline must be available to all other 
disciplines. The data may be scalar (e.g., pressure and temperature), vector (e.g., deflection and heat transfer), or 
integrated quantities (e.g., aerodynamic and thermal loads). The data transfer process may be subjected to additional 
constraints, such as conservation of forces, moments, and energy.  

Samareh and Bhatia1 provide a review of existing data transfer algorithms, which range from earlier algorithms 
like FLEXSTAB2 at Boeing in early seventies to Dassault Aviation work3-4 in the eighties. In recent years, various 
researchers have examined the data transfer process primarily for aeroelastic analysis. Discrepancies and 
dissimilarities in the geometry and the mesh models are two potential sources of error in the data transfer process. 
One source of error may arise if the models have dissimilar levels of geometry details. For example, a CFD mesh 
generally resembles the true outer model line geometry of the aircraft; the CFD mesh includes details such as 
pylons, nacelles, flaps, and slats. However, a CSM mesh generally represents only the major structural components, 
such as the wing box. Flaps and slats are represented either by a few simple beam elements or are completely 
excluded. Tzong et al.5 and Kapania and Bhardwaj6  present data transfer algorithms that are based on the finite 
element (FE) method, in which the virtual work is used to transfer the aerodynamic pressures onto a CSM mesh. 
Then, the displacements are transferred back to the CFD mesh through the reciprocal theorem. Kapania and 
Bhardwaj6 were successful in using a simplified version of this algorithm for several wings. 

Brown7 adds virtual elements in the CSM model to cover the discrepancies in the geometry definition between 
CSM and CFD models. These virtual elements add neither stiffness nor mass. As pointed out by Cebral and Löhner8,   
the generation of virtual elements is an unnecessary complication, particularly for complex geometries. 

Smith, Hodges, and Cesnik9 provide excellent overviews of six data transfer methods between CFD and CSM 
disciplines. These methods are infinite-plate spline (IPS), multiquadric biharmonic (MQ), nonuniform B-spline 
(NUBS), thin-plate spline (TPS), finite-plate spline (FPS), and inverse isoparametric mapping (IIM). The IPS 
method is the basis for the popular surface splines method, which is available in most commercial aeroelastic 
analysis tools (e.g., MSC NASTRAN†). The IPS method interpolates a function of two independent variables and 
requires noncoincident mesh points. Smith, Hodges, and Cesnik9 recommend further study of IIM and NUBS. They 
indicate that IIM shows great promise for two-dimensional applications and needs extension to three dimensions. 

Clutter10 and Send11 extend NUBS to three dimensions. One major limitation with most NUBS implementation 
is that the input data must be a structured (regular) mesh. This limitation forces the data, at best, to be approximated 
in most realistic cases. Samareh12 presents a method that removes this limitation, and the method uses a non-uniform 
rational B-spline (NURBS) representation for data transfer among various disciplines. This method is a general 
three-dimensional, least-squares representation, which removes the requirement for the structured input mesh and 
can handle multiple coincident points. Another advantage of this method is that the users have control over the 
tradeoff between smoothness and accuracy. 

Murti and Valliappan13 present an IIM algorithm for a two-dimensional model, and Pidaparti14 further refines the 
IIM algorithm. The refined algorithm uses the FE shape functions to interpolate the coordinates, pressure, and 
displacement vectors. Because the FE shape functions satisfy a positivity constraint, the process will maintain local 
extrema. Maman and Farhat15 and Farhat, Lesoinne, and LeTallec16 outline a consistent interpolation algorithm 
similar to IIM for transferring information between two dissimilar meshes. The local interpolation is computed by 
projecting one mesh onto another. Cebral and Löhner17 present a variation of IIM that guarantees conservation of 
forces. They use a Galerkin method to solve for the pressure on the CSM mesh. They also use an adaptive Gaussian 
integration technique to improve the accuracy. Farhat, Lesoinne, and LeTallec16 also present a variation of their 
original algorithm that guarantees conservation of forces. We used a variation of this algorithm for our current study. 

The accuracy of the data transfer process for integrated quantities (e.g., forces, moments, and energy) depends on 
the consistency of data transfer as well as other constraints, such as conservation of forces and moments. For 
example, the following equation defines consistent load vectors for the structural analysis on a CSM mesh as: 

                                                           
† MSC NASTRAN is a registered trademark of the McNeal-Schwendler Corporation 
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where  
ef  is the elemental load vector, B is the FE shape function, P  is the nodal pressure, n is the unit surface 

normal on the CSM mesh,  and dA   is the infinitesimal surface element on the CSM mesh. Because the above 
equation uses the same shape functions as used to calculate the element stiffness matrix, the equation guarantees a 
consistent loading.18 There are several possible problems with using the above equation. First, the aerodynamic load 
may have a large variation within a single CSM element, such that the shape functions are inadequate to capture the 
load variation across the element. Second, the FE shape functions may be unavailable for some commercial CSM 
codes. Third, the local normal vectors for a CSM mesh are generally different to a CFD mesh, primarily due to 
differences in discretization. In its present form, Eq. (1) does not guarantee conservation of forces and moments. An 
alternative approach to Eq. (1) is to integrate the loads on the CFD mesh and inject the resulting force vectors to the 
CSM mesh. This approach guarantees conservation of forces and moments. One limitation of this method is that the 
CFD mesh must have equal or higher resolution than the CSM mesh. Refining the CFD surface mesh (e.g., splitting 
quadrilateral into four elements) and interpolating the corresponding data will alleviate this problem without refining 
the entire field mesh. The next section presents a general algorithm, followed by some selected results and summary. 

II. Data Transfer Algorithm 
We can represent the data transfer between two dissimilar meshes in a matrix form as: 

 }]{[}{ 1212 FTF =  (2) 

where matrix {F1} represents the input data on the source mesh, matrix {F2} represents the output data on the target 
mesh, and matrix [T21] is a transformation matrix. For example, {F1} could represent the aerodynamic loads defined 
on a CFD mesh and transferred to a CSM mesh as {F2}. Generally, the transformation matrices are large and sparse. 
If the transformation matrix [T21] is independent of the shape changes, then we can calculate [T21] once and use it as 
long as there is no change in the mesh connectivity.  

The use of a transformation matrix simplifies the integrated analyses such as aeroelastic calculation. The 
aeroelastic calculation has four distinct steps: a) calculate aerodynamic loads on the CFD mesh (FF), b) transfer 
aerodynamic loads to the CSM mesh (FS), c) calculate the aeroelastic deflections on the CSM mesh (δS), and d) 
transfer the aeroelastic deflection to the CFD mesh (δF) to recalculate and update the aerodynamic loads. Equation 
(3) summaries this process as: 
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where FF is the aerodynamic load vector on the CFD mesh, FR are coordinates of the CFD mesh, Fδ are aeroelastic 
deflections on the CFD mesh, 

SF is the aerodynamic load vector on the CSM mesh, 
Sδ are the aeroelastic deflections 

on the CSM mesh, and [T ] is the transformation matrix. Combining Eqs. 3a with 3d and 3b with 3c results in, 

 { } [ ]{ }( ){ }
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For a linear structure without rigid body degrees-of-freedom, we can further simplify Eq. (4) to 

 { } [ ][ ] [ ]{ }( ){ }FFF FTKTRFF SFFSF
1−+=  (5) 

We can extend this formulation to applications with rigid body degrees-of-freedom. Through Eq. 5, CFD codes can 
be decoupled from a linear CSM code. 



 
American Institute of Aeronautics and Astronautics 

 

4

 
If the transformation matrix is independent of the shape changes, then the formulation is especially appealing for 

sensitivity analysis used in a gradient-based optimization. For example, we can use the following equation to 
transfer the CFD load sensitivity to a CSM mesh as, 

 { } [ ] { }
V
FT

V
F

S ∂
∂

=
∂
∂ F

F
S   

where V  is the design variable vector, and [ ]FST  is a constant transformation matrix. 
We can reformulate most data transfer algorithms and present them in a matrix form. Next section provides a 

reformulation of the algorithm presented by Farhat, Lesoinne, and LeTallec16. 

III. Discrete Data Transfer 
The algorithm presented here is a derivative of the IIM algorithm and the algorithm presented in Farhat, 

Lesoinne, and LeTallec16. The discrete data transfer process consists of three steps: 1) find the nearest source 
element for every target point, 2) calculate the mapping coefficients for every target point and its corresponding 
(nearest) source element, and 3) interpolate/inject from the source element to the corresponding target point. We can 
use the results from steps 1-2 for multiple data transfer applications so long the topologies of the source and the 
target meshes are unchanged.  

The first step requires a spatial proximity search, which is 
the most time-consuming part of the entire process. We must 
first find a nearest source element to a target point (see Fig. 
1). One way to accomplish this step is to project every target 
point to every source element. This is an exhaustive search, 
which has the complexity of )( 2NO  and is prohibitively 
expensive. Samet19 presents several methods and data 
structures suitable for the proximity search. We use the 
alternative digital tree (ADT) method introduced by Bonet 
and Peraire20, which is similar to an octree method. The ADT 
method reduces the search complexity to ))(log(NON , which 
is far more efficient than the exhaustive search. After 
application of ADT, we will have a handful of candidate 
source elements for every target point. 
 

For every target point and its candidate source elements, 
we need to find a candidate point on the source element that 
is the nearest to the target point. Then, we select the closest 
candidate point and its corresponding element. In order to 
accomplish this, we need to have a complete definition for 
the source element shape. We use finite element basis 
functions for this purpose. Using these functions, one can define element shape as: 
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The term s
jR  represents source element shape, s

, jir  are source element nodes, ξ1 and ξ2 are the element parametric 
coordinates, and Bi are the element basis functions. Standard books on finite element analysis contain detailed 
discussions on finite element basis functions and their properties. Figure 2 shows the basis functions for bar, 
triangle, and quadrilateral elements. 

target

source

target

source

Figure 1. Source and Target Meshes.
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Figure 2: Elements and Basis Functions.
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As shown in Fig. 2, the nearest point on a source element to a target point has the minimum distance between the 
two points. Equation 7 defines the distance from a target point (

kR ) to any point on the source element (j) as a 
function of the source element parameters: 
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The nearest location on the source element to the target point can be determined by finding the minimum distance: 
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For bar and triangular elements, Eq. (8) results in a system of linear equations. For quadrilateral elements, Eq. (8) 
results in a system of quasi-linear equations, and we use a damped Newton-Raphson technique to solve them. For 
example, Eq. (8) can be rewritten for a triangular element (B1 = ξ1, B2 = ξ2, and, B3 = 1 - ξ1 - ξ2) as:  
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where rs
i,j are the nodes of source element j. Solving this linear system results in k

1ξ and  k2ξ , which are the 
parametric coordinates of a point nearest to the target point k on the source element j. This concludes the second step 
in our process. 

 
We have now sufficient information to transfer scalar or vector data using the source element definition as 

 ∑=
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where s
if is the data defined on the source element, and

kf is the interpolated data for point k on the target mesh. We 
can represent Eq. (10) in a matrix form as 

 [ ] ∑ ===
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For example, 
SF could represent the temperature distribution on a CFD mesh, and 

TF  would be the resulting 
interpolated temperature distribution on a CSM mesh. 
 
This algorithm could be easily adapted for an aeroelastic analysis, where the aeroelastic deflection is transferred 
from a CSM mesh to a CFD mesh and aerodynamic loads from a CFD mesh to a CSM mesh. To interpolate the 
aeroelastic deflection from a CSM mesh to a CFD mesh, we can rewrite Eq. (11) as: 

 ]][[][ CSMCSMCFDCFD T δδ −=  (12) 

where 
CFDδ  and 

CSMδ  are the aeroelastic deflections on the CFD and the CSM meshes, respectively. There are two 
approaches to transfer CFD loads to a CSM mesh: 1) interpolate pressure onto the CSM mesh and integrate the 
pressure on the CSM mesh, and 2) integrate pressure on the CFD mesh and then transfer the resulting load vectors 
onto the CSM mesh. The latter approach guarantees conservation of forces and moments, but not the former 
approach. We use virtual work to transfer the aerodynamic loads to CSM mesh. The virtual work, product of force 
and deflection, on the CSM mesh (UCSM)) must be equal to the virtual work on the CFD mesh (UCFD) as 
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Substituting Eq. (12) into Eq. (13) and rearranging terms result in: 
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Equation (14) satisfies the reciprocity relation, which allows us to use the same transformation matrix to transfer 
deflections and loads as 
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In addition to the virtual work, Eq. (15) satisfies conservation of forces as: 
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Therefore, we have proven that Eq. (15) maintains virtual work and conservation of forces. Next, we will look at 
conservation of moments. Although the source and target meshes are created from the same geometry model, there 
still exists a gap between the two meshes due to different levels of mesh discretization. This gap creates a moment 
deficit ( CSMM∆ ), which needs to be taken into account. The conservation of moments requires that the moments on 
CSM and CFD meshes to be equal as: 
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We can expand this equation as: 
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where CFD
ip is the projection of  CFD mesh points ( CFD

ir ) onto the CSM mesh. As a result, 
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The term )( CFD
i

CFD
i pr −  represents the gap between the two meshes. We use the load transformation matrix to 

transfer nodal CFD moment deficits ( CFD
iM∆ ) to CSM mesh ( CSM

kM∆ ) as: 

 [ ] [ ] [ ]CFDTCSM MTM ∆=∆ −CSMCFD  (20) 

This process maintains conservation of moments. In the next section, we present results for several cases. 

IV. Results 
The author has implemented the algorithm described in the previous section in a C++ computer program, and this 
program is available for distribution within the United States. We have applied the algorithm to a set of test cases, 
and Table 1 shows a summary of these results. We ran all test cases on a 3 GHz PC running Linux operating system. 
The conservation of forces and moments were satisfied within machine accuracy (10-12) for all load transfer cases. It 
took less than ten seconds for a typical test case.  

 

Table 1. Algorithm Performance 

Test Cases # of Points # of Elements # of Points # of Elements CPU Time (s)
1) MicroAirVehicle(Aero to FEM) 30656 60832 929 872 6.356
2) X43 (FEM to Aero) 986 1799 1776 3548 0.576
3a) X33 (Aero to Aero) 22987 22680 69051 137357 62.33
3b) X43 (Aero to FEM) 1776 3548 986 1799 0.48
4a) Ballute (Aero to FEM) 7151 8278 9904 17352 4.18
4b) Ballute (Aero to FEM) 9904 17352 7151 8278 3.42
4c) Ballute (Aero to FEM) 37144 69408 7151 8278 8.396
4d) Ballute (Aero to FEM) 143680 277632 7151 8278 29.12
4e) Ballute (Aero to FEM) 564948 1110528 7151 8278 113.5
5) Morphing Wing (Aero to FEM) 5700 5280 65 62 0.908
6) Mode Shape (FEM to Aero) 443 404 6201 6032 0.86
7) BWB (FEM 2 Aero)     38532 574324 18404 17472 17.621

Source Target
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The algorithm performance depends on the mesh sizes 
(number of points and elements for the source and target 
meshes), element definitions, discrepancies in mesh 
resolutions, gaps between two meshes, and a number of other 
factors. However, the performance approximately varies with 
the average of number of points for the source (nps) and target 
(npt) meshes. Figure 3 shows the algorithm performance (CPU 
time) versus average number of points. The dots represent the 
actual performance, and the line is the least-squares 
approximation of CPU time. One of the data points, shown as 
solid dot in Fig. 3, requires a larger CPU time due to the 
element definition and the shape. The results indicate that the 
performance generally scales linearly with the average number 
of points. 
 

The algorithm accuracy depends on the mesh resolution 
and the gaps between source and target meshes. The algorithm guarantees the load transfer accuracy, and our test 
results validated this fact. The algorithm maintains conservation of forces and moments within the machine accuracy 
(~10-12). We used a ballute (a combination of balloon and parachute used to decelerate a planetary vehicle) model to 
demonstrate the interpolation accuracy. We started with a coarse mesh on a ballute (Fig. 4a) with the sinusoidal 
function (Fig. 4b) superimposed on the entire surface as: 

)cos()sin()sin(),,(
400400800

800
1

zyxzyxf −
=  (21) 

 
We refined the coarse mesh by splitting each element to create our source mesh and function. We then used the 
coarse mesh (target) to interpolate function (f2) from the fine (source) mesh. Figure 4c shows contours for source 
and resulting target meshes. If the process were error free, then (f1) and (f2) should be identical. The average 
difference between (f1) and (f2) was 6.5x10-17, which is well below our machine accuracy. 
 
  

Figure 4: Interpolation Accuracy 

Figure 3. Performance Summary
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The second test case is the aerodynamic load transfer from a CFD mesh to a FE mesh for a Micro Air Vehicle. 
Figure 5 shows: (a) CFD source mesh, (b) contours of coefficients of pressure on the source mesh, (c) aerodynamic 
load vectors on the CFD mesh, (d) target CSM mesh, and (e) the transferred load vectors on the target CSM mesh. 
The force vector distributions on the CSM and the CFD meshes are different due to different levels of discretization; 
however, the transfer process conserved forces, moments, and virtual work within the limits of the computer 
accuracy. It took 6.36 seconds of CPU time to run this case.  

 
The third test case is the interpolation of axial moment from a structured mesh to an unstructured mesh for an X33 
model. Figure 6 shows: (a) the source structured mesh, (b) axial moment contours for the source mesh, (c) target 
mesh, and (d) contours of source and interpolated target axial moment. Figure 6d shows that the original source 
contours (solid blue lines) and interpolated target contour lines (red dashed lines). Both contour lines lie right on top 
of each other. It took 62.33 seconds of CPU time to run this case. 

Figure 5. Load Transfer for a Micro Vehicle

Figure 6. Pressure Interpolation on an X33. 
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The fourth test case is the load transfer for a morphing configuration. Figure 7 shows: (a) CFD mesh, (b) coefficients 
of pressure on the CFD mesh, (c) load vectors on the CFD mesh, (d) a simple mesh for multibody dynamics analysis 
(colors signify different zones), and (e) transferred load vectors on the target mesh. For clarity, the moment 
distribution is not shown in Fig. 7. As with the all other load transfer test cases, the process conserved forces, 
moments, and virtual work within the limits of the computer accuracy. It took 0.91 second of CPU time to run this 
case. 

 
The fifth test case is the deflection transfer for a blended wing body. Figure 8 shows: (a) undeflected and deflected 
FE meshes, (b) undeflected and deflected CFD meshes, (c) close-up view of deflected FE and CFD meshes. The 
transfer included all three components of the deflection vectors. The deflected CFD model is right on the deflected 
FE mesh. It took 17.62 seconds of CPU time to run this case. 
 

Figure 7. Load Transfer for a Morphing Vehicle.

Figure 8. Deflection Transfer for a Blended Wing 
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The sixth and final test case is the aerodynamic load transfer for a ballute. Figure 9 shows: (a) CFD source mesh, (b) 
contours of coefficients of pressure on the source mesh, (c) target CSM mesh, and (d) the transferred load vectors on 
the target CSM mesh. The conservation of forces, moments, and virtual work were maintained within the limits of 
the computer accuracy. It took 4.18 seconds of CPU time to run this case. 
 
 

 

V. Conclusions 
We have presented an algorithm for data transfer between dissimilar meshes. The algorithm is suitable for high-

fidelity multidisciplinary applications, where scalar or vector fields need to be transferred among various discipline. 
The paper includes a formulation for modeling fluid-structure interaction, and the formulation guarantees 
conservation of force and moments. The overall formulation is in a matrix form, which simplifies the algorithm 
integration with existing commercial software. The implementation is independent of the mesh topology, so we can 
treat structured and unstructured meshes in the same manner. The implementation also includes an advanced spatial 
search algorithm that substantially reduces the required computational resources.  

 
We verified the algorithm accuracy through six test cases. The results for load transfer cases demonstrated that 

the algorithm maintained conservation of forces and moments. The test cases also verified the interpolation 
accuracy. The algorithm performance depends on the mesh sizes, element definitions, discrepancies in mesh 
resolutions, gaps between two meshes, and a number of other factors. However, the performance approximately 
varied linearly with the average of number of mesh points. It took less than ten seconds for a typical test case. 
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